A Non-iterative Optimization for Smoothness in Penalized Spline Regression
نویسنده
چکیده
Typically, an optimal smoothing parameter in a penalized spline regression is determined by minimizing an information criterion, such as one of the Cp, CV and GCV criteria. Since an explicit solution to the minimization problem for an information criterion cannot be obtained, it is necessary to carry out an iterative procedure to search for the optimal smoothing parameter, i.e., a grid search method. In order to avoid such extra calculation, a non-iterative optimization method for smoothness in penalized spline regression is proposed using the formulation of generalized ridge regression. By conducting numerical simulations, we verify that our method has better performance than other methods which optimize the number of basis functions and the single smoothing parameter by means of the CV or GCV criteria. MSC 2010 subject classifications: Primary 62G08; Secondary 62J07.
منابع مشابه
Use of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model
Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...
متن کاملEstimating penalized spline regressions: Theory and application to economics
In this paper we give a brief survey of penalized spline smoothing. Penalized spline smoothing is a general non-parametric estimation technique which allows to fit smooth but else unspecified functions to empirical data. While penalized spline regressions are quite popular in natural sciences only few applications can be found in economics. We present an example demonstrating how this non-param...
متن کاملPenalized spline models for functional principal component analysis
We propose an iterative estimation procedure for performing functional principal component analysis. The procedure aims at functional or longitudinal data where the repeated measurements from the same subject are correlated. An increasingly popular smoothing approach, penalized spline regression, is used to represent the mean function. This allows straightforward incorporation of covariates and...
متن کاملPenalized Structured Additive Regression for Space-time Data: a Bayesian Perspective
We propose extensions of penalized spline generalized additive models for analyzing space-time regression data and study them from a Bayesian perspective. Non-linear effects of continuous covariates and time trends are modelled through Bayesian versions of penalized splines, while correlated spatial effects follow a Markov random field prior. This allows to treat all functions and effects withi...
متن کاملPenalized additive regression for space-time data: a Bayesian perspective
We propose extensions of penalized spline generalized additive models for analysing space-time regression data and study them from a Bayesian perspective. Non-linear effects of continuous covariates and time trends are modelled through Bayesian versions of penalized splines, while correlated spatial effects follow a Markov random field prior. This allows to treat all functions and effects withi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009